

How to Work with the Programmable Light Source in VirtualLab Fusion and Example (Gaussian Beam)

Abstract

Providing maximum versatility for your optical simulations is one of our most fundamental objectives. In this document we show you how to work with the Programmable Source: a means to define the spatial dependence of a custom basic source mode which can then be used on its own, as a fully coherent, monochromatic source; or as a single mode in a more complex one (which is perhaps partially spatially coherent or polychromatic). Although the Gaussian beam is one of the source models included in VirtualLab by default, we use it here as a simple programming example.

Where to Find the Programmable Light Source: Catalog

Where to Find the Programmable Light Source: Optical Setup

Writing the Code

- The panel on the right shows a list of available independent parameters.
- Wavelength reads in the values of the wavelength or wavelengths specified in the *Spectral Parameters* tab of the configuration dialogue of the source.
- RefractiveIndex reads in the complex-valued refractive index of the embedding medium for the specific wavelength of the mode. The embedding medium is defined in the Basic Parameters tab.
- **Distance** reads in another parameter from the configuration dialogue, this time from the Basic Parameters tab: the Distance to Input Plane. This is an important parameter, for instance, in the case of a point source, where the source field cannot be defined exactly at the emitting point.
- Jx and Jy are the complex-valued components of the Jones polarization vector. If we represent the function which is defined in the code as U(x, y), then the electric components which finally emanate from the source plane are $E_x = J_x U(x, y)$ and $E_y = J_y U(x, y)$.
- x and y represent the two-dimensional source plane; they are the coordinates spanning this plane.
- The code in the Main Function must return a Complex value per x, y point. All these values put together conform the function *U*(*x*, *y*).
- Use the Snippet Body to group parts of the code in support functions.

Output

- The output is a complex-valued function which represents the spatial part of an eventual electromagnetic field component, U(x, y).
- It is a conclusion of Maxwell's equations that, in a homogeneous medium, it is enough to fix two out of the six electromagnetic components, the other four follow from the equations. In VirtualLab E_x and E_y are, without loss of generality, selected to be these independent components. In the Programmable Light Source, they are fixed as $E_x = J_x U(x, y)$ and $E_y = J_y U(x, y)$.
- The output of the custom source is then an electromagnetic field whose spatial part is defined according to the code, and with a spectral composition as per the Spectral Parameters tab.
- The resulting field can be used as a standalone source in an Optical Setup, it can be saved in the catalog, or it can be employed as a basic mode in a more complex source.

Sampling

	Parameters	S	Spatial Parameters
Polarization Mode Selection	Sampli	ng	Ray Selection
ield Sampling			
Automatic Sampling			
Manual Sampling	Copy Act	ive Pa	rameters from
Sampling Points	108	x	108
Sampling Distance	14 µm	x	14 µm
Array Size	1.5 mm	x	1.5 mm
			1.0
otal Array Size	1.8 mm	x	1.0 mm
otal Array Size	1.8 mm	×	1.0 mm

- The code defines the source field function analytically, so the accuracy of the programmed function is only limited by double precision.
- The user must ensure that the sampling of the field is fine enough to resolve the function they have implemented.
- Use the Sampling tab for this purpose.
- Please note that the sampling may depend on the actual values of the defined global parameters.

Programming a Gaussian Beam

An electromagnetic field is described as a fundamental Gaussian beam when the electric component normal to the main propagation direction is given, at its waist, by a mathematical expression of the form:

$$V_{\ell}(x,y) \propto \exp\left(-\frac{x^2}{w_x^2}\right) \exp\left(-\frac{y^2}{w_y^2}\right)$$
 (1)

 $V_{\ell}(x, y) \to$ One of the six electromagnetic components, which takes a Gaussian form $w_x, w_y \to$ Waist radius in x and y.

Where to Find the Programmable Light Source: Catalog

Where to Find the Programmable Light Source: Optical Setup

Programmable Light Source: Global Parameters

- Once you have triggered open the Edit dialogue, go to the Global Parameters Tab.
- There, Add and Edit two global parameters:
 - double WaistRadiusX = 1 mm (0 mm, 1 m): the radius of the Gaussian beam, in x direction, at the waist.
 - double WaistRadiusY = 1 mm (0
 mm, 1 m): the radius of the Gaussian
 beam, in y direction, at the waist.

VaistRadiusX	Double Value			beschpton	
the second se	Double value	Edit		Value: 1 mm (Allowed range: 0 mm _ 1 m)	_
VaistRadiusY	Double Value	Edit		Value: 1 mm (Allowed range: 0 mm 1 m)	
		lint: it	is		
	so glo us	me cla bal pa e of th	arif Irai Ne s	ying text to each meter to facilitate snippet for other users!	

Programmable Light Source: Snippet Help

ource Code	e Editor				×
ource Code	Global Parameters Snippet Help Advanced Settings				
Title	Fundamental Gaussian Field	Version	1.0		
Author		Last Modified	20/05/2018		
This Progra	ammable Light Source generates a fundamental Gaussian beam at its w	vaist.			
Preview					
Fur	ndamental Gaussian Field				\sim
Versi	on: 1.0 Modified: Sunday, May 20, 2018				
Last	Mounied. Sunday, may 20, 2010				
This F	Programmable Light Source generates a fundame	ental Gaussian b	eam at its wa	ist.	
					\sim
-					

- **Optional:** you can use the Snippet Help to write instructions, clarifications, and some metadata associated to your snippet.
- This option is very helpful to keep track of your progress with a programmable element.
- It is especially useful when the programmable element is later disseminated to be handled by other users!

Programmable Light Source: Snippet Help

lan and		12.55					
Source Code	e Editor		Snippet Help — 🗆	×			
Source Code	Global Parameters Snippet Help Advanced Settings						
Title Author	Fundamental Gaussian Field Ver	Edit Programmable Light Source Polarization Mode Selection Basic Parameters Spectral P	Fundamental Gaussian Field	^			
This Programmable Light Source generates a fundamental Gaussian beam at its waist.		☐ Generate Cross Section Algorithm Snippet	Version: 1.0 Last Modified: Sunday, May 20, 2018 This Programmable Light Source generates a fundamental Gaussian beam at its waist. PARAMETER DESCRIPTION				
Preview			WaistRadiusX Waist radius along x axis.				
Fur	ndamental Gaussian Field		waistradius r waist radius along y axis.	~			
Last Modified: Sunday, May 20, 2018 This Programmable Light Source generates a fundamental Ga			C	lose			
1	Check Consistency Validity:						
		Default Parameter O	k <u>C</u> ancel <u>H</u> elp				

Programmable Light Source: Writing the Code

Programmable Light Source: Adjusting Sampling and Window

dit Programmable Light Source	X		Edit Programmable Light Source		>
Polarization Mode Selection Sampling Basic Parameters Spectral Parameters S Medium at Source Plane Air in Homogeneous Medium Image: Compare the second secon	The source field function is defined completely analytically by the code— full accuracy (up to double precision)—and can be sampled as finely as required!	It is up to the user to define a suitable sampling distance for their custom source in the Sampling tab	Basic Parameters Spectra Polarization Mode Selection Field Sampling Automatic Sampling Manual Sampling Sampling Points Sampling Distance	Copy Active F	Spatial Parameters Ray Selection
Lateral Offset 0 mm Input Field: Position, Size and Shape Automatic Setting ● Manual Setting Shape ● Rectangular	0 mm et of Source Field Elliptic It is up to the user to define a suitable area of		Array Size Embedding Size of Embedding Frame (Sampli Total Sampling Points Total Array Size	3.6 mm x ng Points) 2.7E+02 x 3.9 mm x	3.6 mm 10 2.7E+02 3.9 mm
Diameter 3 mm x Relative Edge Width Absolute Edge Width Default Parameter Defaul	3 mm 10 % 300 µm Help	e 1 2	Default Parameter	<u>Ok</u>	icel <u>H</u> elp

Programmable Light Source: Using Your Snippet

Test the Code!

```
Main Function (Height Profile)
```

```
double realPart = 1.0;
double imaginaryPart = 0.0;
double ux = Math.Exp(-Math.Pow(x / WaistRadiusX, 2.0));
double uy = Math.Exp(-Math.Pow(y / WaistRadiusY, 2.0));
realPart = ux * uy;
return new Complex(realPart, imaginaryPart);
```

title	How to Work with the Programmable Light Source in VirtualLab Fusion and Example (Gaussian Beam)
document code	CZT.0097
version	1.0
toolbox(es)	Starter Toolbox
VL version used for simulations	7.4.0.49
category	Feature Use Case
further reading	 <u>Customizable Help for Programmable Elements</u> <u>Programmable Light Source, Function, Interface and Medium</u> <u>Programming Radially & Azimuthally Polarized Sources</u>